• Altmetric: 132

Article

A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones

Abstract

Gliding is a distinctive locomotion type that has been identified in only three mammal species from the Mesozoic era. Here we describe another Jurassic glider that belongs to the euharamiyidan mammals and shows hair details on its gliding membrane that are highly similar to those of extant gliding mammals. This species possesses a five-boned auditory apparatus consisting of the stapes, incus, malleus, ectotympanic and surangular, representing, to our knowledge, the earliest known definitive mammalian middle ear. The surangular has not been previously identified in any mammalian middle ear, and the morphology of each auditory bone differs from those of known mammals and their kin. We conclude that gliding locomotion was probably common in euharamiyidans, which lends support to idea that there was a major adaptive radiation of mammals in the mid-Jurassic period. The acquisition of the auditory bones in euharamiyidans was related to the formation of the dentary-squamosal jaw joint, which allows a posterior chewing movement, and must have evolved independently from the middle ear structures of monotremes and therian mammals.

References

  1. Zheng, X., Bi, S., Wang, X.&Meng, J.A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period. Nature500, 199–202 (2013)

  2. Bi, S., Wang, Y., Guan, J., Sheng, X.&Meng, J.Three new Jurassic euharamiyidan species reinforce early divergence of mammals. Nature514, 579–584 (2014)

  3. Meng, Q. J.et al.New gliding mammaliaforms from the Jurassic. Nature548, 291–296 (2017)

  4. Luo, Z. X.et al.New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature548, 326–329 (2017)

  5. Fox, R. C.&Meng, J.An X-radiographic and SEM study of the osseous inner ear of multituberculates and monotremes (Mammalia): implications for mammalian phylogeny and evolution of hearing. Zool. J. Linn. Soc.121, 249–291 (1997)

  6. Kielan-Jaworowska, Z., Cifelli, R. L.&Luo, Z.-X.Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure (Columbia Univ. Press, 2004)

  7. Meng, J., Bi, S., Zheng, X.&Wang, X.Ear ossicle morphology of the Jurassic euharamiyidan Arboroharamiya and evolution of mammalian middle ear. J. Morphol. (2016)

  8. Wible, J. R.Origin of Mammalia: the craniodental evidence reexamined. J. Vertebr. Paleontol.11, 1–28 (1991)

  9. Doran, A. H. G.Morphology of the mammalian ossicular auditûs. Trans. Linn. Soc. Lond1, 371–497 (1878)

  10. Fleischer, G.Studien am Skelett des Gehörorgans der Säugetiere, einschließlich des Menschen. Saugetierkdl. Mitt.21, 131–239 (1973)

  11. Zeller, U. in Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials (eds Szalay, F. S., Novacek, M. J.&McKenna, M. J. ) 95–107 (Springer, 1993)

  12. Jackson, S. &Schouten, P.Gliding Mammals of the World (CSIRO, 2012)

  13. Johnson-Murray, J. L.The comparative myology of the gliding membranes of Acrobates, Petauroides and Petaurus contrasted with the cutaneous myology of Hemibelideus and Pseudocheirus (Marsupialia: Phalangeridae) and with selected gliding Rodentia (Sciuridae and Anamoluridae). Aust. J. Zool.35, 101–113 (1987)

  14. Jackson, S. M.&Thorington, R. W. Jr.Gliding mammals: taxonomy of living and extinct species. Smithson. Contrib. Zool.638, 1–117 (2012)

  15. Luo, Z.-X., Yuan, C.-X., Meng, Q.-J.&Ji, Q.A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature476, 442–445 (2011)

  16. Meng, J., Wang, Y.&Li, C.Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature472, 181–185 (2011)

  17. Krause, D. W.et al.First cranial remains of a gondwanatherian mammal reveal remarkable mosaicism. Nature515, 512–517 (2014)

  18. Luo, Z.-X., Gatesy, S. M., Jenkins, F. A. Jr, Amaral, W. W.&Shubin, N. H.Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. Proc. Natl Acad. Sci. USA112, E7101–E7109 (2015)

  19. Hahn, G. Neue Zähnevon Haramiyiden aus der deutschen Ober-Trias und ihre Beziehungen zu den Multituberculaten. Palaeontogr. Abt. A142, 1–15 (1973)

  20. Jenkins, F. A., Jr, Gatesy, S. M., Shubin, N. H.&Amaral, W. W.Haramiyids and Triassic mammalian evolution. Nature385, 715–718 (1997)

  21. Allin, E. F.Evolution of the mammalian middle ear. J. Morphol.147, 403–437 (1975)

  22. Allin, E. F.&Hopson, J. A. in The Evolutionary Biology of Hearing (eds Webster, D. B., Popper, A. N.&Fay, R. R. ) 587–614 (Springer, 1992)

  23. Rich, T. H.et al.The mandible and dentition of the Early Cretaceous monotreme Teinolophos trusleri. Alcheringa40, 475–501 (2016)

  24. Presley, R.Lizards, mammals and the primitive tetrapod tympanic membrane. Symp. Zool. Soc. Lond.52, 127–152 (1984)

  25. Meng, J.&Wyss, A. R.Monotreme affinities and low-frequency hearing suggested by multituberculate ear. Nature377, 141–144 (1995)

  26. Hurum, J. H., Presley, R.&Kielan-Jaworowska, Z.The middle ear in multituberculate mammals. Acta Palaeontol. Pol.41, 253–275 (1996)

  27. Rougier, G. W., Wible, J. R.&Novacek, M. J.Middle-ear ossicles of the multituberculate Kryptobaatar from the Mongolian Late Cretaceous: implications for mammaliamorph relationships and the evolution of the auditory apparatus. Am. Mus. Novit.3187, 1–43 (1996)

  28. Kemp, T. S.Acoustic transformer function of the postdentary bones and quadrate of a nonmammalian cynodont. J. Vertebr. Paleontol.27, 431–441 (2007)

  29. Kermack, K. A., Mussett, F.&Rigney, H. W.The skull of Morganucodon. Zool. J. Linn. Soc.71, 1–158 (1981)

  30. Mallo, M.Formation of the middle ear: recent progress on the developmental and molecular mechanisms. Dev. Biol.231, 410–419 (2001)

  31. Anthwal, N., Joshi, L.&Tucker, A. S.Evolution of the mammalian middle ear and jaw: adaptations and novel structures. J. Anat.222, 147–160 (2013)

  32. Gaupp, E. Die ReichertscheTheorie (Hammer-, Amboss- und Kieferfrage). Archiv. Anatomie. Entwick1912, 1–426 (1913)

  33. Maier, W.&Ruf, I.Evolution of the mammalian middle ear: a historical review. J. Anat.228, 270–283 (2016)

  34. Reichert, C.Über die Visceralbogen der Wirbelthiere im Allgemeinen und deren Metamorphosen bei den Vögeln und Säugethieren. Arch. Anat. Phys. Med. 1837, 120–220 (1837)

  35. Kermack, K. A., Mussett, F.&Rigney, H. W.The lower jaw of Morganucodon. Zool. J. Linn. Soc.53, 87–175 (1973)

  36. Lillegraven, J. A.&Krusat, G.Cranio-mandibular anatomy of Haldanodon exspectatus (Docodonta; Mammalia) from the Late Jurassic of Portugal and its implications to the evolution of mammalian characters. Contrib. Geol28, 39–138 (1991)

  37. Crompton, A. W. in Studies in Vertebrate Evolution (eds Joysey, K. A. &Kemp, T. S. ) 231–251 (Oliver & Boyd, 1972)

  38. Crompton, A. W.&Jenkins, F. A. Jr in Mesozoic Mammals: The First Two-thirds of Mammalian History (eds Lillegraven, J. A., Kielan-Jaworowska, Z.&Clemen, W. A. ) 59–73 (Univ. California Press, 1979)

  39. Henson, O. W. Jr. in The Handbook of Sensory Physiology: the Auditory System VII (eds Keidel, W. D.&Neff, W. D. ) 39–110 (Springer, 1974)

  40. Tucker, A. S., Watson, R. P., Lettice, L. A., Yamada, G.&Hill, R. E.Bapx1 regulates patterning in the middle ear: altered regulatory role in the transition from the proximal jaw during vertebrate evolution. Development131, 1235–1245 (2004)

  41. Crompton, A. W.&Hylander, W. L. in The Ecology and Biology of Mammal-like Reptiles (eds Hotton, N. III, MacLean, P. D., Roth J. J.&Rot E. C. ) 263–282 (Smithsonian Inst. Press, 1986)

  42. Dial, R., Bloodworth, B., Lee, A., Boyne, P.&Heys, J.The distribution of free space and its relation to canopy composition at six forest sites. For. Sci.50, 312–325 (2004)

  43. Heinicke, M. P., Greenbaum, E., Jackman, T. R.&Bauer, A. M.Evolution of gliding in Southeast Asian geckos and other vertebrates is temporally congruent with dipterocarp forest development. Biol. Lett.8, 994–997 (2012)

  44. Socha, J. J., Jafari, F., Munk, Y.&Byrnes, G.How animals glide: from trajectory to morphology. Can. J. Zool.93, 901–924 (2015)

  45. Meng, J., Hu, Y., Wang, Y., Wang, X.&Li, C.A Mesozoic gliding mammal from northeastern China. Nature444, 889–893 (2006)

  46. Hayssen, V.Patterns of body and tail length and body mass in Sciuridae. J. Mamm.89, 852–873 (2008)

  47. Dudley, R.et al.Gliding and the functional origins of flight: biomechanical novelty or necessity?Annu. Rev. Ecol. Evol. Syst.38, 179–201 (2007)

  48. Endo, H., Yokokawa, K., Kurohmaru, M.&Hayashi, Y.Functional anatomy of gliding membrane muscles in the sugar glider (Petaurus breviceps). Ann. Anat.180, 93–96 (1998)

  49. Luo, Z.-X.Transformation and diversification in early mammal evolution. Nature450, 1011–1019 (2007)

  50. Grossnickle, D. M. &Polly, P. D.Mammal disparity decreases during the Cretaceous angiosperm radiation. Proc. R. Soc. Lond. B280, 20132110 (2013)

  51. Meng, J.Mesozoic mammals of China: implications for phylogeny and early evolution of mammals. Natl Sci. Rev.1, 521–542 (2014)

  52. Close, R. A., Friedman, M., Lloyd, G. T.&Benson, R. B.Evidence for a mid-Jurassic adaptive radiation in mammals. Curr. Biol.25, 2137–2142 (2015)

  53. Meng, J.&Hou, S.-L.Earliest known mammalian stapes from an early cretaceous eutriconodontan mammal and implications for evolution of mammalian middle ear. Palaeontol. Polonica67, 181–196 (2016)

  54. Zhou, C.-F., Wu, S., Martin, T.&Luo, Z.-X.A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations. Nature500, 163–167 (2013)

  55. Yuan, C.-X., Ji, Q., Meng, Q.-J., Tabrum, A. R.&Luo, Z.-X.Earliest evolution of multituberculate mammals revealed by a new Jurassic fossil. Science341, 779–783 (2013)

  56. Meng, J., Bi, S., Wang, Y., Zheng, X.&Wang, X.Dental and mandibular morphologies of Arboroharamiya (Haramiyida, Mammalia): a comparison with other haramiyidans and Megaconus and implications for mammalian evolution. PLoS One9, e113847 (2014)

  57. Zhou, Z.-H., Jin, F.&Wang, Y.Vertebrate assemblages from the middle-late Jurassic Yanliao Biota in Northeast China. Earth Sci. Front17, 252–254 (2010)

  58. Xu, X., Zhou, Z.-H., Sullivan, C., Wang, Y.&Ren, D.An updated review of the Middle-Late Jurassic Yanliao biota: chronology, taphonomy, paleontology and paleoecology. Acta Geol. Sin. (English Edition)90, 2229–2243 (2016)

  59. Gaetano, L. C.&Rougier, G. W.New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny. J. Vertebr. Paleontol.31, 829–843 (2011)

  60. Gaetano, L. C.&Rougier, G. W.First amphilestid from South America: a molariform from the Jurassic Cañadón Asfalto Formation, Patagonia, Argentina. J. Mamm. Evol.19, 235–248 (2012)

  61. Gurovich, Y.&Beck, R.The phylogenetic affinities of the enigmatic mammalian clade Gondwanatheria. J. Mamm. Evol.16, 25–49 (2009)

  62. Rowe, T.Definition, diagnosis and origin of Mammalia. J. Vertebr. Paleontol.8, 241–264 (1988)

  63. O’Leary, M. A.et al.The placental mammal ancestor and the post-K-Pg radiation of placentals. Science339, 662–667 (2013)

  64. Butler, P. M.Review of the early allotherian mammals. Acta Palaeontol. Pol.45, 317–342 (2000)

  65. Butler, P. M.&Hooker, J. J.New teeth of allotherian mammals from the English Bathonian, including the earliest multituberculates. Acta Palaeontol. Pol.50, 185–207 (2005)

  66. Hahn, G.&Hahn, R.Evolutionary tendencies and systematic arrangement in the Haramiyida (Mammalia). Geol. Palaeontol40, 173–193 (2006)

  67. Averianov, A. O.&Lopatin, A. V.Phylogeny of triconodonts and symmetrodonts and the origin of extant mammals. Dokl. Biol. Sci.436, 32–35 (2011)

  68. Mao, F.-Y., Wang, Y.-Q., Bi, S.-D., Guan, J.&Meng, J.Tooth enamel microstructures of three Jurassic euharamiyidans and implications for tooth enamel evolution in allotherian mammals. J. Vertebr. Paleontol.37, e1279168 (2017)

  69. Luo, Z.-X., Schultz, J. A.&Ekdale, E. G. in Evolution of the Vertebrate Ear (eds Clack, J. A., Fay, R. R.&Popper, A. N. ) 139–174 (Springer, 2016)

  70. Swofford, D. L.PAUP* – Phylogenetic analysis Using Parsimony (*and other methods). Version4 (4.0a152) (Sinauer Associates, 2002)

  71. Ronquist, F.&Huelsenbeck, J. P.MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics19, 1572–1574 (2003)

  72. Ronquist, F.et al.MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol.61, 539–542 (2012)

Acknowledgements

We thank S.-H. Xie for specimen preparation; P.-F. Yin and Y.-M. Hou for computed laminography scanning of the specimens; X.-T. Zheng, X.-L. Wang, H.-J. Li, Z.-J. Gao, X.-H. Ding, and D.-Y. Sun for access to comparative specimens; N. Wong for drawing the auditory bones and animal reconstruction; D. W. Krause and S. Hoffmann for sharing data and insights on incisor identification; D. Sigogneau-Russell and Z.-X. Luo for permissions to use their published figures; and Z.-X. Luo, Z.-H. Zhou, X. Xu, G. Rougier, J. A. Schultz, A. S. Tucker, and M. Takechi for discussions. This work was supported by the National Natural Science Foundation of China (41688103; 41404022) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18000000).